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We construct a dynamical analog to theq=3 Potts model, using linear chaotic maps and a diffusive coupling.
We find well-defined order-disorder phase transitionssPTsd in the system, and obtain the phase diagrams for
both simultaneous and sequential updating of the model. For simultaneous updating we find continuous PTs
whose critical exponents are consistent with those of the equilibrium Potts model. Under sequential updating,
the phase diagram shows a tricritical point, and the PTs become first order for large coupling and chaoticity of
the local maps. A preliminary estimation finds critical exponents in the region of continuous PTs that are not
consistent with those of the equilibrium model.
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I. INTRODUCTION

Coupled map latticessCMLsd—dynamical systems with
discrete-time, discrete-space, and continuous states, consist-
ing of interacting elements on a regular lattice—have been
the subject of intense research during the last several years,
mainly because they have proven to be suitable simple mod-
els of extended dynamical systemsf1–7g. CMLs may be
used to simulate complex phenomena in physics and other
fields such as chemistry, biology, computation, engineering,
and even social sciencesf8g. Most of the interest in these
systems has been concentrated in their possible collective
behavior; in fact, it has been found that some types of cha-
otic CMLs present order-disorder transitions with the same
phenomenology found in continuous phase transitionssPTsd
in equilibrium statistical mechanics. In particular, Miller and
Huse f9g studied two-dimensionals2Dd lattices of odd-
symmetric piecewise-linear chaotic maps with diffusive cou-
pling and found an order-disorder transition that was tenta-
tively located in the 2D Ising universality class. Extensive
calculations for this and other similar models performed by
Marcq et al. f10,11g indicate that the transition does not re-
ally belong to the 2D Ising universality, since the critical
exponent for the correlation lengthsnd appears to be different
from the Ising valuesn=1d when the numerical simulations
are done in such a way that the individual lattice sites are
updated synchronously. On the other hand, it was also found
that asynchronous updating of the lattice sites brings the PT
back to the 2D Ising universality, suggesting that the updat-
ing scheme is a relevant parameter in the vicinity of the PT.

It has been generally believed that equilibrium spin sys-
tems, such as the ones represented by the Ising model,
cannot be simulated by synchronous algorithmsf12g. In the
Metropolis Monte Carlo algorithmf13g, for instanceswhich
is the simplest and best known numerical simulation for
these equilibrium systemsd, one cannot update two
neighboring—in general, interacting—spins simultaneously
f14g. In dynamical systems, on the other hand, the issue of

simultaneous updating had been explored for extended sys-
tems with local interactionsf7,15,16g and also for globally
coupled systemsf17–19g. Chaté and Mannevillef7g found in
1992 that synchronicity is essential for systems with local
interactions for exhibiting nontrivial collective behavior,
concluding that any analogy with the traditional systems of
statistical mechanics studied by using asynchronous algo-
rithms should be made with great care. For globally coupled
smean-field-liked systems, Kanekof17g found in 1990 that
“globally coupled chaos violates the law of large numbers
but not the central limit theorem.” More recently, in 1998,
Abramson and Zanettef18g showed that the dynamical be-
havior of asynchronous globally coupled maps is completely
different from that of the usual synchronous models and also
found that asynchronous updating restores the law of large
numbers. This finding was corroborated by Sinhaf19g,
whose studies also showed that the normal statistical behav-
ior is rapidly restored with a certain degree of asynchronicity.
A recent study explored the issue of whether or not the up-
dating scheme is a relevant parameter in the dynamical be-
havior of locally coupled extended systems, using a simulta-
neous version of the well-known Metropolis algorithm for
the simulation of the 2D Ising modelf15g. It was found that,
after a small modification done to the algorithm in order to
rule away some anomalous behavior of the system, simulta-
neous updating in the Metropolis algorithm preserves the
universality class of the Ising model, and so, in this case at
least, the issue of synchronicity in updating is irrelevant. It
was noted, however, that the “small modification”sactually,
a reduction in the acceptance ratio for both increasing- and
decreasing-energy movesd could be a source of asynchrony
in the updating scheme.

The question about what makes the Miller-Husef9g and
some other modelsf10,11,20g show a critical behavior dif-
ferent from the expected Ising-like one is still unanswered. In
this paper we perform a study of the phase transitions in
CMLs with the symmetries of theq=3 Potts model, focusing
our attention on the effects of the synchronization, or ab-
sence of it, in the updating scheme. In Sec. II we describe the
model; Sec. III studies the model under simultaneous updat-
ing, and includes a description of the finite-size scaling tech-*Electronic address: cristina@mda.cinvestav.mx
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niques used. Asynchronous updating is studied in Sec. IV,
and our final conclusions appear in Sec. V.

II. A DYNAMICAL ANALOG
OF THE Q=3 POTTS MODEL

The dynamical system we study is modeled by a 2D
square lattice, whose elements obey an individual dynamics
given by the nonlinear chaotic mapxi,jst+1d=F(xi,jstd), to be
followed by a diffusive interaction of strengthe. The combi-
nation of these two steps gives the mapping

xi,jst + 1d = F„xi,jstd… +
e

do
i ’, j8

DsF„xi8,j8std…,F„xi,jstd…d,

s2.1d

where the sum is over thed nearest neighborssi8 , j8d of the
site si , jd, and Dsx,yd stands for the shortest distance be-
tweenx andy, to be defined later.

As for the local map, our goal is to generate one that issad
chaotic, so that the exponential separation of orbits generates
the disorder needed in the model, andsbd with the same
symmetries of theq=3 Potts model. A map that fulfills these
requirements can be obtained as follows. Take the simple
linear map, defined in thef0,1d real interval

fsxd = 5gx if 0 ø x , x1,

a − gx if x1 ø x , x2,

b + gx if x2 ø x , 1,

s2.2d

whereg is the slope of the map, withg.3 so that the map is
both chaotic and takes thef0,1d interval outsideof itself.
The constantsa, b, x1, and x2 are chosen so thatfs1/2d
=1/2, limx→1fsxd=1 and the map is single valued and con-
tinuous. With these conditions, we get the following values
for these parameters:

a =
g + 1

2
, b = 1 −g, x1 =

g + 1

4g
, x2 =

3g − 1

4g
.

s2.3d

Now, put three of these maps together in the plane, joining
the pointss1,1d of one map with the pointss0,0d of the next.
This defines the segmentf0,3d as the domain. Finally, apply
a modulo 3 operation to the outcome so that the range is also
confined to the segmentf0,3d. All together, the mapping
becomesssee Fig. 1d

Fsxd = fintsxd + fsx mod 1dg mod 3, s2.4d

with f given in Eq.s2.2d.
The model is completed by implementing a diffusive cou-

pling scheme in a two-dimensional lattice of these maps. The
definition forD in Eq. s2.1d is given as follows. Plotx andy
along a circumference of perimeter 3 and take the shortest
distance between them:

Dsx,yd = 5x − y if ux − yu , 3/2,

x − y − 3 if x − y . 3/2,

x − y + 3 if x − y , − 3/2.

s2.5d

The complete dynamics is then

xi,jst + 1d =HF„xi,jstd…

+
e

4o
i8,j8

DsF„xi8,j8std…,F„xi,jstd…dJ mod 3.

s2.6d

The quantities to be studied are based on the local spins,
defined as the integer part ofx and taking, therefore, the
values 0, 1, and 2. Upon this definition, it is easy to check
that this model has the symmetries of theq=3 Potts model.
In fact, the observables of this system are invariant when one
applies the transformationx→x+1, to the mappings2.4d,
since one can show easily thatF(sx+1d mod 3)=(Fsxd
+1) mod 3. This generates the even permutations of the
three states. Furthermore, the reflection of the variable
aroundx=3/2 results in the reflection ofF around the same
value, and this generates the odd permutations.

From the spins we have defined we construct an instanta-
neous order parameter, defined as followsf21g. For a lattice
of lateral sizeL let nqstd be the number of sites whose state is
q at time t, and letnstd be the greatest among them, i.e.,
nstd=maxfn1std ,n2std ,n3stdg; then the instantaneous order pa-
rametermL

t is given by

mL
t =

3nstd − L2

2L2 . s2.7d

FIG. 1. Chaotic map for the dynamical analogous of the Potts
model. The map is given by Eq.s2.4d; the plot corresponds to the
function Fsxd for g=4.
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The order parameterML or magnetization is the time average
of mL

t , i.e.,

ML = kmL
t l =

1

T o
t=t0+1

t0+T

mL
t , s2.8d

where t0 is a transient time andT is the time interval over
which the average is taken. Higher order moments of the
magnetization are given byML

sqd=ksmL
t dql. A susceptibility is

defined by

xL = L2sML
s2d − ML

2d, s2.9d

and the fourth-order cumulantf22,23g is

UL
s4d = 1 −

ML
s4d

3sML
s2dd2 . s2.10d

III. SYNCHRONOUS UPDATING

We say the evolution of the system is synchronous when
all the sitessi , jd of the lattice are updated in a single time
step, as Eq.s2.6d suggests, taking as inputs the values of all
the sites at the previous time. Following this scheme, after
initializing the lattice with random numbers in the range
f0,3d and allowing the system to evolve for a transient time
long enough for it to relax, we have studied its statistical
behavior. We have found an order-disorder phase transition
sPTd that depends upon the coupling intensitye and the slope
g of the chaotic map, as can be seen in Fig. 2, where a phase
diagram is presented. A reentrant behavior is observed within
a range of values forg, where the system can go from a
disordered phase to an ordered one and back to the disor-
dered phase as the coupling intensity increases.

A. Characterization of the phase transition

The PTs along the order-disorder boundary have been
identified as continuous, as no hysteresis has been observed,
and from the observation of the evolution of the probability
densities for the magnetization. These probability densities

were evaluated for three points along the order-disorder
boundary, ate=0.8 and 0.9, varyingg, and atg=3.3, varying
e. In all cases we found distributions with two peaks for the
corresponding variable in the critical region, and have also
found that these peaks become less pronounced asL grows,
as shown in Fig. 3 for thee=0.8. In this figure we have
plotted histograms for different values of the lattice sizeL;
the frequencies have been normalized in such a way that the
area below the histogram curve is 1. These histograms were
averaged in periods of time long enough to obtain the same
result, within error bars, regardless of the initial magnetiza-
tion of the system. Even though the reduction of the distance
valley peaks in the histograms is slow asL grows, the trend
is clear enough. Following the criteria established for equi-
librium systems by Lee and Kosterlitzf24g, we take this
transition to be continuous. Results for the other two points
are quite similar. We are therefore taking this PT as continu-
ous over the 0,e,1 range.

B. Finite-size scaling and finite-size corrections

In order to find whether or not the model belongs to the
universality class of the Potts model, we need to estimate the
critical exponents for the system. To do so, we resort to the
well-known approach of finite-size scaling, as described, for
instance, in Ref.f25g, including an estimation of the leading
finite-size correctionssFSCsd. The techniques involved have
been described in Ref.f11g, as well as in other reported work
f10,20g.

Our raw data are the measurements of the first four mo-
ments of magnetization—with corresponding error bars—for
a large number of values ofe for fixed g or vice versa, and
for several values ofL. The first task is to estimate the criti-
cal coupling, be itgc for fixed e or vice versa. In what fol-
lows we will assume fixede and variableg. For this estima-
tion we use the standard crossing of fourth-order cumulants

FIG. 2. sColor onlined Phase diagrams corresponding to the syn-
chronousssquaresd and asynchronousstrianglesd schemes;g is the
slope of the chaotic map ande is the coupling strength. The lines
are given only as a guide to the eye.

FIG. 3. Histograms of unit area for magnetization frequencies.
There is one bin for each possible magnetization value. For eachL
there are two lines, one showing the histogram obtained from com-
pletely ordered initial conditions, and the other showing a histogram
obtained from fully random initial conditions. The error barssnot
shownd are of the order of the difference between the two lines.
Here we use synchronous updating,e=0.8, with g=4.0025 forL
=16, andg=3.9733 forL=32.
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methodsUL
s4d crossingsd, reported by Binderf22g.

Even if this system is not a bonafide equilibrium system,
we make the heuristic assumption that equilibrium results
apply. This means that we can follow the standard formula-
tion of scaling for equilibrium systems, in which one writes a
free energy density for a system of sizeL as

Fsg,H,Ld = L−dF̂„sg − gcdL1/n,HLsb+gd/n
…, s3.1d

whereH is an external magnetic field,d is the dimension of

the lattice, andF̂ is universal. Here we are ignoring both a
nonsingular background and corrections to scaling. The criti-
cal couplinggc and the critical exponentsn, b, and g take
their infinite-size lattice values. From here one finds that, in
the absence of an external field, the magnetizationM, the
susceptibilityx, and the cumulantUs4d behave in the critical
region as

MLsgd = L−b/nM̂„L1/nsg − gcd…, s3.2d

xLsgd = Lg/nx̂„L1/nsg − gcd…, s3.3d

UL
s4dsgd = Ûs4d

„L1/nsg − gcd…, s3.4d

whereM̂, x̂, andÛs4d are universal functions.
Using these scaling assumptions, the standard crossing-

of-cumulants method may be implemented in order to get the
critical point f23g, since Eq.s3.4d says that, in principle,
cumulant curves should cross at the critical pointgc. In prac-
tice, when the lattice sizes are small, correction terms—
which increase with decreasing lattice size—become larger
than the statistical dispersion of the data and prevent the
cumulant curves from having a common intersection. We are
faced, therefore, with the need of dealing with FSCs. For
systems in equilibrium, these correction terms originate in
the irrelevant operators present in the free energy density,
operators that typically scale with negative exponents as the
size of the system grows. It is expected that, forL not too
small, the irrelevant operator whose associated exponent has
the smallest absolute value will dominate these corrections,
where we are assuming simple power-law corrections. We
have used different approaches in the estimation ofgc
f11,14,20,22,26g, and we are reporting the weighted average.
Once an estimation ofgc has been achieved, we proceed to
estimate the critical exponents using the customary expres-
sionsf11,14,20g

]gUL
s4dsgcd . L1/nsA0 + A1L

−Vd, s3.5d

MLsgcd . Lb/nsB0 + B1L
−Vd, s3.6d

xLsgcd . Lg/nsC0 + C1L
−Vd; s3.7d

beingA0, A1, B0, etc., nonuniversal real parameters andV a
nonuniversal effective correction exponent, different for each
critical exponent.

C. Critical exponents

We have studied in detail, for a fixed coupling intensity
se=0.8d, the continuous PT that the system presents when

the slope of the chaotic map varies. We worked with nine
lattice sizes:L=16, 20, 26, 32, 40, 50, 64, 80, and 102.
Correlation times are taken astL=Lzt1 for a square lattice of
sideL, and from numerical simulations we get the estimates
z<2 and t1=0.898. Transient times were taken to be
TtranssLd=4tL, the iteration time for a sample was set as
TitersLd=500tL; and for each reported point inL and e, no
less than 200 samples were collected. These large amounts of
data are reflected in the size of the uncertainties we get for
the estimated averaged quantities.

From the fourth-order cumulant we get a critical coupling
gc=3.9574s2d and a correction exponentV=2.4s2d sthe
numbers between the parentheses correspond to the uncer-
tainty in the last digits of the quantityd. In Fig. 4 we present,
as an example, a plot of the original fourth-order cumulant
curvesUL

s4d vs g and the horizontally shifted curvesUL
s4d vs

g−AL−V, with a zoom around the critical pointscrossings
regiond. The values obtained for the critical exponents are
n=0.82s2d, b /n=0.15s1d, and g /n=1.68s3d. These values
are to be compared with the reference critical exponents for
the 2D Potts modelsq=3d, n=5/6, b /n=2/15, andg /n
=26/15, which were obtained based upon a conjecture
whose validity has been numerically verifiedssee Ref.f27g

FIG. 4. sColor onlined Estimation of the critical coupling for the
model under the synchronous updating with fixede=0.8. sad
Fourth-order cumulant curvesUL

s4d vs the slopeg of the chaotic
map. sbd Shifted cumulant curves, i.e.,UL

s4d vs g−AL−V. The lines
correspond toL=16, 20, 26, 32, 40, 50, 64, 80, and 102.
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and references thereind. As can be seen, there is a good
agreement between our estimate forn and its exact value.
Our b /n andg /n show a marginal agreement with their ex-
act values. We believe these deviations to be residual conse-
quences of the strong FSCs present in the model. Therefore,
we think the deviations found for these two exponents are
not large enough as to constitute evidence to consider the
model outside of the 2Dq=3 Potts model universality class.

IV. ASYNCHRONOUS UPDATING

From among the many possible asynchronous updating
schemes, we choose the most general one: For a lattice of
sideL, let N=L2, then divide each time step intoN substeps
sDt=1/Nd. In each of the substeps, update one element cho-
sen at random so that in the long run each of the elements of
the lattice gets updated once for each time stepsa sweep of
the latticed. Equations2.6d becomes:

xi,jst + Dtd = 5HFfxi,jstdg +
e

4
oi8,j8 Dfxi8,j8std − F„xi,jstd…gJ mod 3 if fi, jg = f§std,hstdg

xi,jstd if fi, jg Þ f§std,hstdg,

s4.1d

where§std andhstd are stochastic processes that take, at each
substep, an integer value between 1 andL, with a uniform
probability. As within the synchronous scheme, we have
found an order-disorder phase transition that depends upon
the coupling intensitye and the slope of the chaotic mapg,
as can be seen again in Fig. 2, where the phase diagrams
corresponding to both synchronous and asynchronous updat-
ing schemes are presented. A first difference between the
dynamics of the system within different schemes is obvious;
for the asynchronous scheme, the reentrant behavior is not
observed.

A. Characterization of the phase transition

A very surprising result for the asynchronous updating of
the model is that while for small coupling strengths the ob-
served phase transition appears to be continuous, for large
coupling intensities the system clearly presents a first-order
PT. This is apparent from the absence of hysteresis in the
first case and the development of strong hysteresis for the
second, as shown in Fig. 5, where hysteresis curves for three
different coupling strengthsse=0.4, 0.5, and 0.6d have been
plotted. We have also studied the behavior of the magnetiza-
tion histograms fore close toec. In Figs. 6sad and 6sbd we
present histograms of magnetization around the critical re-
gion, for two different coupling intensities:e=0.2, which is
in the region where hysteresis is not observed, ande=0.8, in
the region that presents hysteresis. As before, these histo-
grams have been normalized in such a way that the area
below the histogram curve is 1, and frequencies were aver-
aged over times long enough to obtain the same result,
within error bars, regardless of the initial magnetization of
the system. For conditions under which the system does not
present hysteresisfFigs. 3 and 6sadg, the trend is as expected
for a continuous transition: two maxima are observed, but as
L grows, the depth of the well between the peaks in the
histogram decreases, and so, for large enough values ofL,
only a single peak is expected to appear. This signals that
there is no coexistence of the ordered-disordered phases. On
the other hand, the histograms corresponding to a large cou-

pling intensityse=0.8d within the asynchronous scheme, Fig.
6sbd, show that the system can be either disordered or per-
fectly ordered, and the trend shows that asL increases, the
separation between the perfectly ordered state and the disor-
dered state is better defined, with a negligible probability for
states in between; i.e., there is a clear coexistence of phases
characteristic of first-order phase transitions. It should be
mentioned that the ordered phase is not an adsorbing phase,
since the lattice is entering and leaving this state as the simu-
lation runs. It is clear therefore that there must be a tricritical

FIG. 5. sColor onlined Hysteresis curves of magnetization for
three different values ofe, and three different lattice sizes:L=16
strianglesd, L=20 ssquaresd, andL=26 scirclesd. Dark slightd points
correspond to calculations in which initial conditions were fully
randomscompletely orderedd; in both cases, the transient time was
taken to be of 10 000 time steps and the size of the interval for the
average was of 50 000 time steps. Error bars are about the size of
the marks.
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point on the boundary between order and disorder in the
phase diagram, but a precise numerical localization has not
been achieved yet.

B. Critical exponents

For the region where the transition is second order, we
have done numerical simulations in order to estimate the
critical exponents for the system under this scheme. We have
studied the continuous PT that the system presents when the
slope of the chaotic map varies for a fixed coupling intensity
se=0.2d. Here the correlation times for the dynamics are
much larger than those for the synchronous updating; from
numerical simulations we have estimatedz<2 and at1 of
6.641. These large correlations make the simulations very
time consuming, especially for large lattices, and so we have
been forced to use only five lattice sizes:L=16, 20, 26, 32,
and 40. We have used as beforeTtranssLd=4tL and TitersLd
=500tL for each sample, and obtained 100 or more samples

for each L and e simulated. We have followed again the
crossing of fourth-order-cumulants method, and imple-
mented finite-size scaling with finite-size corrections, as in
the previous section. The value obtained for the critical slope
was gc=3.4020s3d, and for the correlation length exponent
we foundn=0.72s6d. This value ofn falls far away from the
known value for theq=3 Potts modelf27g. One needs to
remember here that the presence of a tricritical point intro-
duces a different universality class, and that for points that
are not too far from the tricritical point there is always a
crossover from the tricritical exponents to those of the con-
tinuous transition. At the moment we cannot yet rule out the
possibility that the numbers we got might be just the results
of such a crossover.

V. CONCLUSION

We have constructed a nonequilibrium, deterministic, and
chaotic analog to theq=3 Potts model and have studied the
order-disorder phase transition of this two-dimensional lat-
tice of a chaotic coupled map whose dynamics has theq=3
Potts symmetry. We have found that the updating scheme is
indeed a relevant parameter in the dynamical behavior of the
locally coupled extended systems, since it can change the
typeof transition from continuous to first order. But contrary
to the findings for dynamicf9–11g and stochasticf20g ana-
logs of the two-dimensional Ising model, the critical expo-
nent is consistent with theq=3 Potts model universality
class. One then is faced with a question of why the behavior
for the Ising model’s dynamical and stochastic analogs with
synchronous updating falls in a different universality class
from that of the equilibrium Ising model. It should be noted
besides that in this same class one finds the results for a
simultaneous updating of a Metropolis-like algorithm on the
Ising model. There is some reason therefore to believe that
the deviation of the dynamic and stochastic models from the
equilibrium universality class is an anomaly and applies only
to models with the Ising symmetries.

Much more remarkable is the fact that, when studied
within an asynchronous updating scheme, the model shows
tricriticality; first-order phase transitions occur for large cou-
pling and slope in the local mapsslarge chaoticityd and con-
tinuous transitions are found for small coupling andg<3.
Estimating the exact position of the tricritical point is still
under work. The critical exponents we have found for the
continuous phase transitions are not consistent with theq
=3 Potts model universality class, but our numbers have to
be taken still as preliminary, since the dynamics is quite slow
under this updating scheme, and more statistics needs to be
collected for good estimates to appear. Besides, it is quite
possible that our numbers are simply reflecting a crossover
phenomenon from the exponents associated to the tricritical
point to those of the continuous phase transition. We have
not tried to measure the exponent for the tricritical point yet.

The clear conclusion from the simulations performed for
this model and from previous workf10,11g, is that, for dy-
namical analogs of well-known equilibrium models, the up-
dating scheme does matter. Thus, an updating scheme may
give full agreement with the universality class of the corre-

FIG. 6. Histograms of unit area for magnetization frequencies.
There is one bin for each possible magnetization value. For eachL
there are two lines, one showing the histogram obtained from com-
pletely ordered initial conditions, and the other showing that ob-
tained from fully random initial conditions. The error barssnot plot-
tedd are of the order of the difference between the two lines. Here
we use asynchronous updating, and the values of different param-
eters aresad e=0.2, with g=3.4197 forL=16, andg=3.4068 for
L=32; sbd e=0.8, with g=5.6705 forL=6, g=5.5745 forL=8, g
=5.5125 forL=10, andg=5.4685 forL=12. Here, and in spite of
the different heights, the extreme right bins have a total area of 0.5
in all the cases, meaning the system spends half of the time in a
perfectly ordered state. The inset shows some detail of the histo-
grams for the disordered phase.
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sponding equilibrium model, while another may just change
subtly the critical exponents, or change completely the char-
acter of the transition. This dependence with respect to up-
grading schemes—or in general, to implementation of the
model—extends even to their mean-field limits. For the
Miller-Huse model it was found that a definition of the
mean-field limit as a breakdown of closest-neighbor correla-
tions gives a regular continuous transition in the mean-field
universality classf28g. But an implementation of the same

mean-field limit using fully connected graphs gives a first-
order transitionf29g. It is therefore clear that for these dy-
namical systems, symmetries, and range of interactions are
not enough to predict their critical behavior.
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