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Critical behavior of a dynamic analog to the q=3 Potts model
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We construct a dynamical analog to ttpe3 Potts model, using linear chaotic maps and a diffusive coupling.
We find well-defined order-disorder phase transitidR%s in the system, and obtain the phase diagrams for
both simultaneous and sequential updating of the model. For simultaneous updating we find continuous PTs
whose critical exponents are consistent with those of the equilibrium Potts model. Under sequential updating,
the phase diagram shows a tricritical point, and the PTs become first order for large coupling and chaoticity of
the local maps. A preliminary estimation finds critical exponents in the region of continuous PTs that are not
consistent with those of the equilibrium model.
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I. INTRODUCTION simultaneous updating had been explored for extended sys-
tems with local interaction§7,15,14 and also for globally

discrete-time, discrete-space, and continuous states, consi%%umed systemfl7-19. Chaté and MannevillEr] found in

ing of interacting elements on a regular lattice—have been 92 that synchronicity is essential for systems with local

the subject of intense research during the last several year'g(;[ﬁg?ggﬁwnst;gtr aenXh:)rlltzlirI](? nS\/ri]ttt?\;ﬁlel t(r:g:jlieticglr:/f; sbirt]::ggr,of
mainly because they have proven to be suitable simple moad- 9 y gy y

. statistical mechanics studied by using asynchronous algo-
els of extended dynamical systeris-7]. CMLs may be .
used to simulate complex phenomena in physics and oth F[hms should be made with great care. For globally coupled

fields such as chemistry, biology, computation, engineering,mean'f'eld'“ke systems, Kanekcﬁl?] found in 1990 that
and even social scienc¢8]. Most of the interest in these globally coupled chaos violates the law of large numbers

systems has been concentrated in their possible collectiv létr;nitsé?]ea%%ntzrglng%téhgggivrga mg{ethfc;;r:gﬁ”nlizalli?f’

L e o asncvonous gl couped maps s completl
phenomentﬁogy found in continuous phase transitiéMes different from that of the usual synchronous models and also
in equilibrium statistical mechanics. In particular, Miller and found that asynchronous updating restores the law of large

X o X ; ~ numbers. This finding was corroborated by SinH],
Huse [9] studied two-dimensiona(2D) lattices of odd whose studies also showed that the normal statistical behav-

symmetric piecewise-linear chaotic maps with diffusive Cou_ior is rapidly restored with a certain degree of asynchronicit
pling and found an order-disorder transition that was tenta- pialy 9 y Y.

tively located in the 2D Ising universality class. ExtensiveA recent study explored the issue of whether or not the up-

calculations for this and other similar models performed bydatmg scheme is a relevant parameter in the dynamical be-

Marcg et al.[10,1] indicate that the transition does not re- Eg\éfsr ?/LLZ?(?r!lyo?c{(lﬁzlevf/jei)-(liiggvend I\S/Iyes;i?)mosl,isuiln%r?tr?rlrzn?(l)t?-
ally belong to the 2D Ising universality, since the critical P 9

exponent for the correlation length) appears to be different the simulation of t_h_e 2'.3 Ising modEdS]. It was fou_nd that,
X h ) . . after a small modification done to the algorithm in order to
from the Ising valugv»=1) when the numerical simulations

q . h that the individual lati it rule away some anomalous behavior of the system, simulta-
are done in such a way that the individual lattice Sites arEeous updating in the Metropolis algorithm preserves the

Coupled map lattice$CMLs)—dynamical systems with

updated synchronously. Qn the other hand,_ it was also foun niversality class of the Ising model, and so, in this case at
that asynchronou; upde_mng Of. the lattice sites brings the PIeast, the issue of synchronicity in updating is irrelevant. It
back tﬁ the .2D Isw:g universality, suggeﬁtmg t.hf”‘t thfe #pdat\'/vas noted, however, that the “small modificatigiattually,

Ing scheme s a relevant parameter in the vicinity of the PTa reduction in the acceptance ratio for both increasing- and

It has been generally believed that equilibrium spin sys- .
tems, such as the ones represented by the Ising mod e::r::ausllar:j%ﬂe:gersgcyh;nn?\ebesould be a source of asynchrony

cannot be simulated by synchronous algoritH@]. In the The ; ;
) . ) . guestion about what makes the Miller-HuiS¢ and
Metropolis Monte Carlo algorithril3], for instance(which some other modelEL0,11,2Q show a critical behavior dif-

is the S|mp_lgst. and best known numerical simulation forferent from the expected Ising-like one is still unanswered. In

these e_qwhb_num syste_ms one  cannot u_pdate WO 4his paper we perform a study of the phase transitions in
ne|ghbor|ng—|r_1 general, interacting—spins S|multar_1eously MLs with the symmetries of theg=3 Potts model, focusing

[14]. In dynamical systems, on the other hand, the issue o ur attention on the effects of the synchronization, or ab-

sence of it, in the updating scheme. In Sec. Il we describe the

model; Sec. Il studies the model under simultaneous updat-

*Electronic address: cristina@mda.cinvestav.mx ing, and includes a description of the finite-size scaling tech-
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nigues used. Asynchronous updating is studied in Sec. 1V, 3T .\/. LI . T
and our final conclusions appear in Sec. V.

II. ADYNAMICAL ANALOG B
OF THE Q=3 POTTS MODEL 2

The dynamical system we study is modeled by a 2D
square lattice, whose elements obey an individual dynamics i
given by the nonlinear chaotic mag;(t+1)=F(x ;(t)), to be /\ .
followed by a diffusive interaction of strengtéh The combi- L \/ i
nation of these two steps gives the mapping = .

F(x)

Xi,j(t+1):|:(xi,j(t))+52D(F(Xi’,j’(t))aF(Xi,j(t)))a ot b A L1 AL

i’ 0 1 2 3

(2.1
FIG. 1. Chaotic map for the dynamical analogous of the Potts
where the sum is over the nearest neighbor8’,j’) of the modgl. The map is given by E@2.4); the plot corresponds to the
site (i,j), and D(x,y) stands for the shortest distance be-functionF(x) for g=4.
tweenx andy, to be defined later.
As for the local map, our goal is to generate one thétis
chaotic, so that the exponential separation of orbits generates X—y if [x—y| <3/2,
the disorder needed in the model, afi with the same o .
symmetries of thg=3 Potts model. A map that fulfills these Dxy)=1x-y=3 ff x-y=>3/2, (2.5
requirements can be obtained as follows. Take the simple x-y+3 ifx-y<-3/2.
linear map, defined in thgd, 1) real interval
) The complete dynamics is then
gx if 0 = x<Xxq,
f(x)=1a-gx if x; =S x<xy, (2.2

b+gx ifx,<x<1, Xi,j(t+1):{F(Xi,j(t))

both chaotic and takes tH®,1) interval outsideof itself. +EE D(F(x j+(1),F(x (1))

The constants, b, x;, and x, are chosen so thait(1/2) i

=1/2, lim_,f(x)=1 and the map is single valued and con- (2.6)
tinuous. With these conditions, we get the following values

for these parameters:

whereg is the slope of the map, with> 3 so that the map is }
mod 3.

The quantities to be studied are based on the local spins,
g+1 g+1 3g-1 defined as the integer part of and taking, therefore, the
a= T' b=1-9, X{=——, %= 4—. values 0, 1, and 2. Upon this definition, it is easy to check
9 that this model has the symmetries of tje3 Potts model.
2.3 In fact, the observables of this system are invariant when one
applies the transformatior— x+1, to the mapping2.4),
Now, put three of these maps together in the plane, joiningince one can show easily th#&((x+1) mod 3=(F(x)
the points(1, 1) of one map with the point®,0) of the next.  +1) mod 3. This generates the even permutations of the
This defines the segmef, 3) as the domain. Finally, apply three states. Furthermore, the reflection of the variable
a modulo 3 operation to the outcome so that the range is alsaroundx=3/2 results in the reflection df around the same
confined to the segmen0,3). All together, the mapping value, and this generates the odd permutations.

becomegsee Fig. 1 From the spins we have defined we construct an instanta-
neous order parameter, defined as folld@%|. For a lattice
F(x) = [int(x) + f(x mod 1)] mod 3, (2.4 of lateral sizel. let ny(t) be the number of sites whose state is
g at timet, and letn(t) be the greatest among them, i.e.,
with f given in Eq.(2.2). n(t)=maxn(t),n,(t),ns(t)]; then the instantaneous order pa-

The model is completed by implementing a diffusive cou-rameterm; is given by
pling scheme in a two-dimensional lattice of these maps. The
definition forD in Eq. (2.1) is given as follows. Plokx andy 5
along a circumference of perimeter 3 and take the shortest m = 3n(t) - L 2.7
. . L - 2 . .
distance between them: 2L

036228-2



CRITICAL BEHAVIOR OF A DYNAMICAL ANALOG TO ...

PHYSICAL REVIEW E 71, 036228(2005

- j I j T 1 O 1
0.8} A | '
[ ordered N
0.6 phase A - .25 I
w e ‘
0.4 . g
i
,»‘/ =
v disordered 1k
0.2 P phase N
_.A./‘ P R BRI B BT
3.5 4 4.5 5 55
g

magnetization
FIG. 2. (Color onling Phase diagrams corresponding to the syn-

chronous(squares and asynchronougriangles schemesg is the FIG. 3. Histograms of unit area for magnetization frequencies.
slope of the chaotic map anglis the coupling strength. The lines There is one bin for each possible magnetization value. For each
are given only as a guide to the eye. there are two lines, one showing the histogram obtained from com-
pletely ordered initial conditions, and the other showing a histogram
obtained from fully random initial conditions. The error bamot
shown are of the order of the difference between the two lines.

The order parameté; or magnetization is the time average Here we use synchronous updating:0.8, with g=4.0025 forL

i,
of m, ie., =16, andg=3.9733 forL.=32.
totT
ML:<th):? > om, (2.9
Figtl were evaluated for three points along the order-disorder

wheret, is a transient time and is the time interval over boundary, a&=0.8 and 0.9, varying, and atg=3.3, varying
which the average is taken. Higher order moments of the- In all cases we found distributions with two peaks for the

magnetization are given W(Lq>:<(th)q>_ A susceptibility is corresponding variable in the critical region, and have also
defined by found that these peaks become less pronouncedgiews,

as shown in Fig. 3 for the=0.8. In this figure we have
xL=LAMP - Mm?), (2.90  plotted histograms for different values of the lattice size
_ the frequencies have been normalized in such a way that the
and the fourth-order cumulafi2,23 is area below the histogram curve is 1. These histograms were
M(LA) averaged in periods of time long enough to obtain the same
3—(2)2. (2.10 result, within error bars, regardless of the initial magnetiza-
(M) tion of the system. Even though the reduction of the distance
valley peaks in the histograms is slow lagrows, the trend
is clear enough. Following the criteria established for equi-
lll. SYNCHRONOUS UPDATING librium systems by Lee and Kosterlif24], we take this
We say the evolution of the system is Synchronous Wherﬁl’anSitiOﬂ to be continuous. Results for the other two points
all the sites(i,j) of the lattice are updated in a single time are quite similar. We are therefore taking this PT as continu-
step, as Eq(2.6) suggests, taking as inputs the values of allous over the &ce<1 range.
the sites at the previous time. Following this scheme, after
initializing the lattice with random numbers in the range
[0,3) and allowing the system to evolve for a transient time
long enough for it to relax, we have studied its statistical In order to find whether or not the model belongs to the
behavior. We have found an order-disorder phase transitiodniversality class of the Potts model, we need to estimate the
(PT) that depends upon the coupling intensitgnd the slope ~ critical exponents for the system. To do so, we resort to the
g of the chaotic map, as can be seen in F|g 2, where a phawn-known approach of finite-size Scaling, as described, for
diagram is presented. A reentrant behavior is observed withifistance, in Ref{25], including an estimation of the leading
a range of values fog' where the System can go from a finite-size COTreCtiOﬂsFSCg. The teChniqueS involved have
disordered phase to an ordered one and back to the disdpeen described in Reff11], as well as in other reported work

dered phase as the coupling intensity increases. [10,20.
Our raw data are the measurements of the first four mo-

ments of magnetization—with corresponding error bars—for
a large number of values effor fixed g or vice versa, and
The PTs along the order-disorder boundary have beefor several values of. The first task is to estimate the criti-
identified as continuous, as no hysteresis has been observes| coupling, be itg, for fixed e or vice versa. In what fol-
and from the observation of the evolution of the probabilitylows we will assume fixe& and variableg. For this estima-
densities for the magnetization. These probability densitietion we use the standard crossing of fourth-order cumulants

u?=1-

B. Finite-size scaling and finite-size corrections

A. Characterization of the phase transition
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method(U(L4) crossing$ reported by Bindef22)]. N ]

Even if this system is not a bonafide equilibrium system, 0.65 ]
we make the heuristic assumption that equilibrium results TN
apply. This means that we can follow the standard formula- [ =
tion of scaling for equilibrium systems, in which one writes a X
free energy density for a system of sizeas

cumulant
7
A

F(g,H,L) =L9F((g- gL HLE) . (3.0)

whereH is an external magnetic field, is the dimension of

the lattice, and- is universal. Here we are ignoring both a

nonsingular background and corrections to scaling. The criti-
cal couplingg. and the critical exponents, 8, and y take 395 396 397
their infinite-size lattice values. From here one finds that, in  (a) slope

the absence of an external field, the magnetizaipnthe

susceptibilityy, and the cumulant/® behave in the critical »
region as k £

05 —

0.62 s ———————

ML(9) = LM (L(g - go)., (3.2 06 PRI ]
(3.3 I \\“5\

0.58 - \\i\‘\ -

U9 = 09(LY(g - go), 3.4 N
whereM, ¥, andU® are universal functions. 058 L SO
Using these scaling assumptions, the standard crossing- Y
of-cumulants method may be implemented in order to get the 3955 5954 5956 5955 396 5962
critical point [23], since Eq.(3.4) says that, in principle, (b) slope
cumulant curves should cross at the critical pgatin prac-
tice, when the lattice sizes are small, correction terms— FIG. 4. (Color onling Estimation of the critical coupling for the
which increase with decreasing lattice size—become largenodel under the SynChrOHOUS updating with fixeet0.8. (a)
than the statistical dispersion of the data and prevent thEourth-order cumulant curved? vs the slopeg of the chaotic
cumulant curves from having a common intersection. We argnap. (b) Shifted cumulant curves ieU? vs g-AL™. The lines
faced, therefore, with the need of dealing with FSCs. Forcorrespond td-=16, 20, 26, 32, 40, 50, 64, 80, and 102.
systems in equilibrium, these correction terms originate in
the irrelevant operators present in the free energy density,
operators that typically scale with negative exponents as ththe slope of the chaotic map varies. We worked with nine
size of the system grows. It is expected that, fonot too  lattice sizes:L=16, 20, 26, 32, 40, 50, 64, 80, and 102.
small, the irrelevant operator whose associated exponent h&@orrelation times are taken as=L%r, for a square lattice of
the smallest absolute value will dominate these correctionsidel, and from numerical simulations we get the estimates
where we are assuming simple power-law corrections. We=2 and r,=0.898. Transient times were taken to be
have used different approaches in the estimationgof T, ..{(L)=47, the iteration time for a sample was set as
[11,14,20,22,2F and we are reporting the weighted average.T;,,(L)=500r ; and for each reported point in and €, no
Once an estimation of; has been achieved, we proceed toless than 200 samples were collected. These large amounts of
estimate the critical exponents using the customary exprestata are reflected in the size of the uncertainties we get for
sions[11,14,2Q the estimated averaged quantities.
(4 T -Q From the fourth-order cumulant we get a critical coupling
UL (Ge) = L (A + AL, (3.5 0.=3.95742) and a correction exponenf2=2.4(2) (the
numbers between the parentheses correspond to the uncer-
tainty in the last digits of the quantityln Fig. 4 we present,
v —On. as an example a plot of the original fourth-order cumulant
x(Ge) = L™(Co+ C,L™; (3.7 curvesUL vs g and the horizontally shifted curves® vs
being Ao, A;, By, etc., nonuniversal real parameters &hé ~ g—AL™?, with a zoom around the critical DOIT(CFOSSIHQS
nonuniversal effective correction exponent, different for eachegion. The values obtained for the critical exponents are
critical exponent. v=0.822), B/v=0.151), and y/v=1.683). These values
N are to be compared with the reference critical exponents for
C. Critical exponents the 2D Potts modelq=3), »=5/6, B/v=2/15, andy/v
We have studied in detall, for a fixed coupling intensity =26/15, which were obtained based upon a conjecture
(e=0.8), the continuous PT that the system presents whemwhose validity has been numerically verificske Ref[27]

x.(9) =L""x(L*(g-90),

cumulant

ML(go) = L#"(Bo + BoL™), (3.9
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and references therginAs can be seen, there is a good IV. ASYNCHRONOUS UPDATING

agreement between our estimate foand its exact value. From among the many possible asynchronous updating
Our B/v and y/ v show a marginal agreement with their ex- schemes, we choose the most general one: For a lattice of
act values. We believe these deviations to be residual conssidel, let N=L?, then divide each time step ind substeps
quences of the strong FSCs present in the model. ThereforeAt=1/N). In each of the substeps, update one element cho-
we think the deviations found for these two exponents argen at random so that in the long run each of the elements of
not large enough as to constitute evidence to consider thgne lattice gets updated once for each time geepweep of
model outside of the 2[g=3 Potts model universality class. the latticg. Equation(2.6) becomes:

6 H ] —
x,j(t+A0) = {F[Xi,j(t)]‘*ZEi',j' D[Xi’,j’(t)_F(Xi,j(t))]} mod 3 if [i,j]=[s(t), 7(t)]

%j(t) it [i,j]# [s(t), n(V)],

(4.2

wheres(t) and 7(t) are stochastic processes that take, at eachling intensity(e=0.8) within the asynchronous scheme, Fig.
substep, an integer value between 1 anadvith a uniform  6(b), show that the system can be either disordered or per-
probability. As within the synchronous scheme, we havefectly ordered, and the trend shows thatlasicreases, the
found an order-disorder phase transition that depends upd#eparation between the perfectly ordered state and the disor-
the coupling intensity and the slope of the chaotic mgp  dered state is better defined, with a negligible probability for
as can be seen again in Fig. 2, where the phase diagrarfitates in between; i.e., there is a clear coexistence of phases
corresponding to both synchronous and asynchronous updatharacteristic of first-order phase transitions. It should be
ing schemes are presented. A first difference between th@entioned that the ordered phase is not an adsorbing phase,
dynamics of the system within different schemes is obviousgince the lattice is entering and leaving this state as the simu-
for the asynchronous scheme, the reentrant behavior is néation runs. It is clear therefore that there must be a tricritical

observed. L e i e o =
A. Characterization of the phase transition __ _- 0.5
A very surprising result for the asynchronous updating of R J
the model is that while for small coupling strengths the ob- @ | | | ey
served phase transition appears to be continuous, for large Y Y TR
coupling intensities the system clearly presents a first-order r T
PT. This is apparent from the absence of hysteresis in the §
first case and the development of strong hysteresis for the T i ’
second, as shown in Fig. 5, where hysteresis curves for three s 105
different coupling strength&e=0.4, 0.5, and 0)6have been St e
plotted. We have also studied the behavior of the magnetiza- E i‘,’), I P N e = )

tion histograms fore close toe.. In Figs. Ga) and 6b) we 43 435 44 445 45
present histograms of magnetization around the critical re- ,

gion, for two different coupling intensitieg=0.2, which is

in the region where hysteresis is not observed, énd.8, in

the region that presents hysteresis. As before, these histo-

grams have been normalized in such a way that the area '(C)
below the histogram curve is 1, and frequencies were aver- =l b e L0 190
aged over times long enough to obtain the same result, 46 465 47 475 48

within error bars, regardless of the initial magnetization of slope

the system. For conditions under which the system does not r 5 (color onling Hysteresis curves of magnetization for
present hysteres[igs. 3 and )], the trend is as expected e gifferent values of, and three different lattice size=16

for a continuous transition: two maxima are observed, but agjangles, L =20 (squares andL=26 (circles. Dark (light) points

L grows, the depth of the well between the peaks in theorrespond to calculations in which initial conditions were fully
histogram decreases, and so, for large enough valués of random(completely ordereq in both cases, the transient time was
only a single peak is expected to appear. This signals thakken to be of 10 000 time steps and the size of the interval for the
there is no coexistence of the ordered-disordered phases. Querage was of 50 000 time steps. Error bars are about the size of
the other hand, the histograms corresponding to a large cothe marks.
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for eachL and e simulated. We have followed again the
crossing of fourth-order-cumulants method, and imple-
mented finite-size scaling with finite-size corrections, as in
the previous section. The value obtained for the critical slope
was g.=3.402@3), and for the correlation length exponent
we foundr»=0.726). This value ofv falls far away from the
known value for theq=3 Potts mode[27]. One needs to
remember here that the presence of a tricritical point intro-
duces a different universality class, and that for points that
are not too far from the tricritical point there is always a
crossover from the tricritical exponents to those of the con-
tinuous transition. At the moment we cannot yet rule out the
possibility that the numbers we got might be just the results
of such a crossover.

V. CONCLUSION

We have constructed a nonequilibrium, deterministic, and
chaotic analog to thg=3 Potts model and have studied the
order-disorder phase transition of this two-dimensional lat-
tice of a chaotic coupled map whose dynamics hagjth&
Potts symmetry. We have found that the updating scheme is
indeed a relevant parameter in the dynamical behavior of the
locally coupled extended systems, since it can change the
typeof transition from continuous to first order. But contrary

to the findings for dynami¢9-11] and stochasti¢20] ana-

FIG. 6. Histograms of unit area for magnetization frequencie31OgS of the two-dimensional Ising model, the critical expo-
There is one bin for each possible magnetization value. For keach nent is consistent with the@=3 Potts model universality

there are two lines, one showing the histogram obtained from comg o e then is faced with a question of why the behavior
pletely ordered initial conditions, and the other showing that ob-f

tained from fully random initial conditions. The error b&m®t plot- sorntchherc:ilongsnsjo?jitisndyg ?IrsnIi(;]alaagi(:fes:gﬁ?isﬁtil\(/;e?gglli?gscg gg
ted) are of the order of the difference between the two lines. Her 4 p 9 Y

we use asynchronous updating, and the values of different par¢';13b[(m_1dthat f?f the er(]]umbrlum Ilsmg modefl_. g Shﬁmd belnotfed
eters are(a) €=0.2, with g=3.4197 forL=16, andg=3.4068 for esides that in this same class one finds the results for a

L=32; (b) €=0.8, with g=5.6705 forL=6, g=5.5745 forL=8, g simultaneous updating of a Metropolis-like algorithm on the
—5.5125 forl =10, andg=5.4685 forL=12. Here, and in spite of 1SiNg model. There is some reason therefore to believe that

the different heights, the extreme right bins have a total area of 0.81€ deviation of the dynamic and stochastic models from the
in all the cases, meaning the system spends half of the time in gquilibrium universality class is an anomaly and applies only
perfectly ordered state. The inset shows some detail of the histd0 models with the Ising symmetries.

grams for the disordered phase. Much more remarkable is the fact that, when studied

within an asynchronous updating scheme, the model shows
dricriticality; first-order phase transitions occur for large cou-
Hling and slope in the local maykarge chaoticity and con-
tinuous transitions are found for small coupling age 3.
Estimating the exact position of the tricritical point is still
under work. The critical exponents we have found for the
continuous phase transitions are not consistent withgthe
For the region where the transition is second order, we=3 Potts model universality class, but our numbers have to
have done numerical simulations in order to estimate théye taken still as preliminary, since the dynamics is quite slow
critical exponents for the system under this scheme. We havender this updating scheme, and more statistics needs to be
studied the continuous PT that the system presents when tlwllected for good estimates to appear. Besides, it is quite
slope of the chaotic map varies for a fixed coupling intensitypossible that our numbers are simply reflecting a crossover
(€=0.2. Here the correlation times for the dynamics arephenomenon from the exponents associated to the tricritical
much larger than those for the synchronous updating; fronpoint to those of the continuous phase transition. We have
numerical simulations we have estimate¢2 and ar; of  not tried to measure the exponent for the tricritical point yet.
6.641. These large correlations make the simulations very The clear conclusion from the simulations performed for
time consuming, especially for large lattices, and so we havéhis model and from previous woik0,11], is that, for dy-
been forced to use only five lattice sizész16, 20, 26, 32, namical analogs of well-known equilibrium models, the up-
and 40. We have used as befdrg,,{(L)=47 and T, (L) dating scheme does matter. Thus, an updating scheme may
=500r_ for each sample, and obtained 100 or more samplegive full agreement with the universality class of the corre-

point on the boundary between order and disorder in th
phase diagram, but a precise numerical localization has n
been achieved yet.

B. Critical exponents
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sponding equilibrium model, while another may just changemean-field limit using fully connected graphs gives a first-
subtly the critical exponents, or change completely the charerder transition29]. It is therefore clear that for these dy-
acter of the transition. This dependence with respect to upaamical systems, symmetries, and range of interactions are
grading schemes—or in general, to implementation of therot enough to predict their critical behavior.

model—extends even to their mean-field limits. For the
Miller-Huse model it was found that a definition of the
mean-field limit as a breakdown of closest-neighbor correla-
tions gives a regular continuous transition in the mean-field This work has been supported by CONACyT, Mexico,
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